Protein mobility and genome interactions in the cell nucleus

Important points for analyzing protein-DNA/RNA interactions in living cells

- Organization of the nucleus
- In vivo solution conditions
- Self-organization in the nucleus
- Chromatin dynamics and genome access

Decisions on the cell's fate made in the nucleus

The mammalian cell nucleus

The cell is a very crowded place (David Goodsell)

from left to right: cell surface

cytoplasm

synthesis of proteins from the endoplasmic reticulum

Golgi apparatus, coated vesicle mitochondrion nucleus

proteins: blue DNA and RNA: red and orange lipids: yellow carbohydrates: green Ribosomes: magenta

How crowded is it? target search, access, interactions..

utec

Concentration of proteins and DNA/RNA in the nucleus

DNA
~15mg/ml (6pg DNA per
cell, ¹⁹ nucleus ~1/10
of cell volume 4x10 ⁻
⁹ cm ³ typical) ²⁰
~18.5mg/ml (56mM
nucleosome
concentration, ²¹ 200
bp/nucleosome,
2bases/bp,1Mbase/3
30g. ²²
~19 mg/ml 23
~20-31 mg/ml (8.1-
12.5pg/cell, ²⁴
nucleus ~1/10 of cell
volume 4×10^{-9} cm ³
typical) ²⁰

<u>RNA</u> ~11 mg/ml (5-25pg RNA per cell, 25 18% in nucleus,²⁶ nucleus $\sim 1/10$ of cell volume 4×10^{-9} cm³ typical).20 ~12-15mg/ml (27.1-33.1pg/cell,²⁴ 18% in nucleus,²⁶ nucleus $\sim 1/10$ of cell volume 4×10^{-9} cm³ typical).²⁰

Protein

~106-215 mg/ml in various regions of the nucleus.²⁷ ~108mg/ml (6pg DNA per

cell,²⁰ protein mass 72X DNA mass and cell volume 4x10⁻⁹ cm3 typical).²⁰ ~200-300mg/ml in E.coli.²⁸

Concentration of ions in the nucleus

- ► ~0.1 M K⁺/Na⁺ (K⁺ > Na⁺)
- ▶ 0.5-1 mM Mg²⁺
- ▶ low µM values of Ca²⁺

▶ 3.1 times higher apparent viscosity than water measured for the mobility of GFP (D = $25 \ \mu m^2 \ cm^{-1}$)

inorganic cations are significantly more abundant than the corresponding mobile anions nucleic phosphate groups and negative protein charges are in excess of the positive protein charges

▶ high Cl⁻ concentration (in vitro!) can significantly disturb proteinprotein or protein-DNA interactions

The promyelocytic leukemia (PML) nuclear body

blue: DAPI; green: anti PML immunostaining

Görisch, Wachsmuth, Ittrich, Bacher, Rippe & Lichter (2004). Nuclear body movement is determined by chromatin accessibility and dynamics. *Proc Natl Acad Sci USA* **101**, 13221–13226 (2004).

PML and Sp100 proteins form distinct patches in the spherical shell of the PML nuclear body

Localization of SUMO modification in PML-NBs

merge 1

PML SUMO-2/3

YZ →X

merge 2

Model for the dynamic structure of a PML nuclear body

Self-assembly versus self-organization (as defined by Tom Misteli)

Figure 1. Self-assembly versus self-organization. In self-assembly, a set of components assembles into a stable, static structure that reaches a thermodynamic equilibrium. In self-organization, a set of components assembles into a steady-state, dynamic structure.

Self-organization in the nucleus

the small particles

favored by the nucleus envrionment

Dynamics of macromolecular interactions in the nucleus

Different pathways for complex assembly

Movements of PML bodies (green) in the nucleus

Chromatin dynamics of 24 h with a YFP-tagged histone

Single Particle tracking (SPT): nuclear bodies, chromatin loci, proteins, RNA

- Easiest approach to measure mobility: Directly watch single particles (over time)
- Prerequisites:

Low concentration, bright & slow particles

Protein mobility and interactions in the cell

 $\mathsf{MSD} = 6 \ D \ t^{\alpha}$

Dependence of diffusion coefficient D and molecular mass *M* protein: $D \propto M^{-\frac{1}{3}}$ DNA: $D \propto M^{-\frac{1}{2}}$ double mass *M* => 0.8 fold lower *D* double mass *M* => 0.7 fold lower *D* Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). *Biochim. Biophys. Acta* **1783**, 2061-2079.

Tracing telomeres in living cells

2-100 kb double-stranded (TTAGGG)_n repeats

de Lange (2009) Science 326, 948.

Tracing specific telomeres in living cells to study their dynamics

Jegou, Chung, Heuvelmann, Wachsmuth, Görisch, Greulich-Bode, Boukamp, Lichter & Rippe (2009). Mol. Biol. Cell 20, 2070.

In vivo labeling of telomeres in human osteosarcoma U2OS cells with LacI-GFP via integrated *lacO* repeats

Metaphase FISH reveals preferred *lacO* integration into telomeres

The telomere mobility is derived from distance changes between two loci according to a "moving corral" model

$$MSD = \left\langle r_{\rm c}^{2} \right\rangle \cdot \left(1 + \frac{2n D_{\rm slow} \Delta t}{\left\langle r_{\rm c}^{2} \right\rangle} \right) \cdot \left[1 - \exp\left(-\frac{2n D_{\rm fast} \Delta t}{\left\langle r_{\rm c}^{2} \right\rangle} \right) \right]$$

Mobility of telomeres at the second and the minute time scale

minute scale 25x higher speed

Mobility measurements over ~3 h (looped, 700x higher speed) show a state of extended mobility for some telomeres

Telomere mobility over different time scales

Telomere mobilityis that of a polymer in a crowded environment according to the "reptation model"

Alternative lengthening of telomeres (ALT)

Maintaining telomere length without telomerase in ~30% of sarcomas and ~10% of carcinomas

- DNA repair/recombination based mechanism
- heterogenous telomere repeat length
- ALT-associated PML Bodies (APBs) = complexes of PML bodies at telomeres

Immunostaining of telomeres and PML

APBs in U2OS cells

Metaphase FISH of telomere repeats

U2OS cells, ALT(+)

human lymphocytes, ALT(-)

High resolution imaging of APBs in U2OS cells

Mobility of PML bodies (green) close to telomeres (red)

70x higher speed

Complex formation between a PML body (green) and a telomere (red)

telomere (mRFP1-Lacl)

50x higher speed